Human Geography through Merseyside -
Quantitative Block: Seeing the world through
numbers

Zi Ye and Ron Mahabir

2026-01-19

Table of contents

Welcome 3
Contact e e 3
Overview 4
Aim and Learning Objectives 4
Module Structure oL 4
Software and Data L 5
Assessment 7
1 Lab: Getting Started in RStudio 8
1.1 Overview oL e 8
1.2 Getting set up with RStudio 8
1.2.1 Install R and RStudio (if necessary) 8

1.2.2 File management L 9

1.2.3 Open RStudio 9

1.2.4 Ways of working 10

1.25 Yourfirst Rcode 11

1.3 Knowing Merseyside Lo 25
1.3.1 Merseyside districts L 25

1.3.2 Merseyside neighbourhoods Lo 40

1.4 Summary 43
1.4.1 Formative Tasks L 44

1.4.2 References. 45

Welcome

This is the website for “Human Geography through Merseyside - Quantitative Block: Seeing
Liverpool through numbers” (module ENVS162) at the University of Liverpool. This block of
the module is designed and delivered by Dr. Zi Ye and Dr. Ron Mahabir from the Geographic
Data Science Lab at the University of Liverpool. The module seeks to provide hands-on
experience and training in introductory statistics for human geographers.

The website is free to wuse and is licensed under the Attribution-NonCommercial-
NoDerivatives 4.0 International. A compilation of this web course is hosted as a GitHub
repository that you can access:

e As an html website.
e As a GitHub repository.

Contact

Zi Ye - zi.ye [at] liverpool.ac.uk Lecturer in Geographic Information Science Office
107, Roxby Building, University of Liverpool - 74 Bedford St S, Liverpool, L69
72T, United Kingdom.

Ron Mahabir - Ron.Mahabir [at] liverpool.ac.uk Lecturer in Geographic Data Sci-
ence Office 4xx, Roxby Building, University of Liverpool - 74 Bedford St S, Liver-
pool, L69 7ZT, United Kingdom.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://gdsl-ul.github.io/quant
https://github.com/GDSL-UL/quant

Overview

Aim and Learning Objectives

This sub-module aims to provide training and skills on a set of basic quantitative skills for
data collection, analysis, and interpretation and to enable you to link conceptual ideas with
real world examples. This block serves as the foundation for Year 2 BA field class
and, optionally, for Year 3 dissertation.

Background

Data and research are key pillars of the global economy and society today. We need rigorous
approaches to collecting and analysing both the statistics that can tell us ‘how much’ and if
there are observable relationships between phenomena; and the information gives us a nuanced
understanding of cultural contexts and human dynamics. Quantitative skills enable us to ex-
plore and measure socio-economic activities and processes at large scales, while qualitative
skills enable understanding of social, cultural, and political contexts and diverse lived experi-
ences. Rather than being in opposition, qualitative and quantitative research can complement
one another in the investigation of today’s pressing research questions.

To these ends, this block will help you develop your quantitative skills, as critical tools. This
course will help you understand what quantitative statistical researchers use and develop a set
of research techniques that can be used in your field classes and dissertations.

Learning objectives:

¢ Understand how to explore a dataset, containing a number of observations described by
a set of variables.

¢ Demonstrate an understanding in the application and interpretation of commonly used
quantitative research methods.

o Ability to work with quantitative data to understand real-world social phenomenian and
patterns.

Module Structure

Staff: Dr Zi Ye and Dr Ron Mahabir
Where and When

Week 1 - 5 Lecture: Tuesday (12am — 1pm) @ Mathematical Sciences, Proudman
Lecture Theatre

Week 1 - 6 Practical PC session: Friday (9 — 11 am) @ Central Teaching Lab: PC
Teaching Centre

Lectures will introduce and explain the fundamentals of quantitative methods, with the op-
portunity to apply the method introduced in the labs later in the week.

The computer practical sessions, will give you the chance to use and apply quantitative meth-
ods to real-world data. These are primarily self-directed sessions, but with support on hand
if you get stuck. Support and training in R will be provided through these sessions. Weekly
sessions will be driven by empirical research questions.

Week Topic Format Staff
1 Introduction Lecture ZY/RM
Getting Started in RStudio: Knowing Computer Lab Practical
Merseyside
2 Exploratory Data Analysis: UK Election Lecture and Computer 7Y
Lab Practical
3 Sampling and data manipulation: Lecture and Computer 7Y
Happiness around the world Lab Practical
4 Correlation, data reliability and the issue Lecture and Computer RM
of scale: Health Lab Practical
5 Publication-standard Research Lecture and Computer RM
Lab Practical
6 Online Assessment Computer Lab RM/ZY

Software and Data

For quantitative training sessions, ensure you have installed and/or have access to RStudio.
To run the analysis and reproduce the code in R, you need the following software installed on
your machine:

e R-4.2.2 (or later)
o RStudio 2022.12.0-353 (or later)

To install and update:

e R, download the appropriate version from The Comprehensive R Archive Network
(CRAN).
¢ RStudio, download the appropriate version from here.

https://cran.r-project.org/
https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/

This software is already installed on University Machines. But you will need it to
run the analysis on your personal devices.

Data

Example datasets could be accessed through Canvas or (some) on GitHub Repository of the
module. These include:

o 2021 UK Census Data.

e 2021 Annulation Population Survey (APS) - only on Canvas.
e 2016 Family Resource Survey (FRS) - only on Canvas.

e 2011 Sample of Anonymised Records (SAR).

Note: The Annual Population Survey requires the completion of a quiz prior to its usage, as
it is licensed.

https://github.com/GDSL-UL/stats

Assessment

1 Lab: Getting Started in RStudio

1.1 Overview

This practical intend to prepare students who have limited experiences with R and RStudio.
The content are adapted based on

e Brunsdon, Chris, and Lex Comber. 2018. An Introduction to r for Spatial Analysis and
Mapping (2e). Sage.

e Comber, Lex, and Chris Brunsdon. 2021. Geographical Data Science and Spatial Data
Analysis: An Introduction in r. Sage.

1.2 Getting set up with RStudio

1.2.1 Install R and RStudio (if necessary)

R is a free, open-source programming language used for statistical analysis, data visualization,
and data science

RStudio is a free front-end to R, designed to make using R easier

All of the PCs in the University PC Teaching Centre used for this class come with R and
RStudio pre-installed, as do the PCs in many other University PC Teaching Centres.

However, you may wish to install R and RStudio on your own computer, or on a University
PC that lacks them.

University computers: Use the Install University Applications app on the computer to
install the latest version of RStudio (this will also install the latest version of R)

Your own computer: R and RStudio can be downloaded from the CRAN website and
installed your own computer - see below for details. A key point is that you should install
R before you install RStudio.

The simplest way to get R installed on your computer is to go the download pages on the R
website - a quick search for ‘download R’ should take you there, but if not you could try:

e Windows: https://cran.r-project.org/bin/windows/base/

https://cran.r-project.org/bin/windows/base/

e Mac: https://cran.r-project.org/bin/macosx/

o Linux: http://cran.r-project.org/bin/linux/

The Windows and Mac version come with installer packages and are easy to install whilst the
Linux binaries require use of a command terminal.

RStudio can be downloaded from https://www.rstudio.com/products/rstudio/download/ and
the free version of RStudio Desktop is more than sufficient for this module and all the other
things you will to do at degree level.

If you experience any problems installing R or RStudio on your own computer, bring it to one
of the class lab sessions where we will be able to provide advice.

1.2.2 File management

Before you start installing software or downloading data, create a folder on your M-Drive (if
working on a University networked machine) or locally if working on your own device — name
this ‘ENVS162’ and within this create a sub-folder for each practical session. For this session,
create a sub-folder called Weekl in your ENVS162 folder on your M-Drive. Take care to ensure
you do not delete any work you do complete in the practical sessions. It is imperative that
you practice good file management!

1.2.3 Open RStudio

RStudio provides an interface to the different things that R can do via the 4 panes: the Console
where code is entered (bottom left), a Source pane with R scripts (top left), the variables in
the working Environment (top right), Files, Plots, Help etc (bottom right) - see the RStudio
environment in Figure below.

In the figure above of the RStudio interface, a new script has been opened, a line of code had
been written and then run in the console. The code assigns a value of 100 to x. The file has
been saved into the current working environment. You are expected to define a similar set
up for each practical as you work through the code. Note that in the script, anything that
follows a # is a comment and ignored by R.

Users can set up their personal preferences for how they like their RStudio interface. Similar to
straight R, there are very few pull-down menus in R, and therefore you will type lines of code
into your script and run these in what is termed a command line interface (the console). Like
all command line interfaces, the learning curve is steep but the interaction with the software is
more detailed which allows greater flexibility and precision in the specification of commands.

Beyond this there are further choices to be made. Commands can be entered in two forms:
directly into the R console window or as a series of commands into a script window. We

https://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/linux/
https://www.rstudio.com/products/rstudio/download/

strongly advise that all code should be written in a script - (a .R file) and then run from
the script. - To run code in a script, place the cursor on the line of code and then run by
pressing the ‘Run’ icon at the top left of the script pane, or by pressing Ctrl Enter (PC) (or
Cmd Enter on a Mac).

File Edit Code View Plots Session Build Debug Profile Tools Help

© -0~ = Go to file/function ~ Addins ~ &) airbnb ~
UKgmd ~[7 Environment History Connections Tutorial =l
RenderonSave | ' Q Render N ‘Q - P Run ~ | ‘S~ Publish ~ g # Import Dataset ~ | & 142Gi8 v | & List ~ -
Source | Visual Outline R ~ | (T Global Environment ~
26+ B Data
27 .
Ao P SINERTEAEE i LS =) uk 46844 obs. of 3 variables

29 uk<-st_read("uk_1soadz.gpkg")

30 poi_sf <- st_as_sf(property,coords = c('Longitude’, 'Latitude’),crs=4326)

31 st_crs(poi_sf)

32 st_crs(uk)

33 poi_with_1soa <- st_join(poi_sf, uk, join = st_within)

34- "7

85

36 - ### Analysis by property csv for all rather than Daily

37

38 output: Tsoa_stat/Tsoa_count.pgkg contains n_listing, total_occupancy and
total_revenue; they are at the LSOA level without any annually disaggregation

39

40~ " {r analyse property in LSOA}) Files Plots Packages Help Viewer Presentation ==
41 Tibrary(tmap) # © # z00m | Eegot - |0 | PG ©

301 @ Chunk 3:intersect into LSOA = Quarto 2

Console Terminal ~ Background Jobs =0

R - R450 sers/ziye/OneDrive - The University of Liverpool/research/airbnb/airbnb/

p;ckag; ;?Vv'vas built under R version 4.5.1 -

> uk<-st_read("uk_1soadz.gpkg")

Reading layer ‘uk_lsoadz' from data source
“c:\Users\ziye\OneDrive - The University of Liverpool\research\airbnb\airbnb\uk_1soadz.gp
using driver ~GPKG'

Simple feature collection with 46844 features and 2 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: -8.650007 ymin: 49.88234 xmax: 1.763571 ymax: 60.86077

Geodetic CRS: WGS 84

> qtm(uk)

>

1.2.4 Ways of working

The first set of consideration relate to how you should work in R/RStudio. The key things to
remember are:

¢ R is a learning curve if you have never done anything like this before. It can be scary.
It can be intimidating. But once you have a bit of familiarity with how things work, it
is incredibly powerful.

¢ You will be working from practical worksheets which will have all the code you need.
Your job is to try to understand what the code is doing and not to remember the code.
Comments in your code really help.

e To help you do this, the very strong suggestion is use the R scripts that are provided,
and that you add your own comments to help you understand what is going on when
you return to them. Comments are prefaced by a hash (#) that is ignored by R. Then
you can save your code (with comments), run it and return to it later and modify at
your leisure.

10

The module places a strong emphasis placed on learning by doing, which means that you
encouraged to unpick the code that you are given, adapt it and play with it. It is not about
remembering or being able to recall each function used but about understanding what is being
done. If you can remember what you did previously (i.e. the operations you undertook) and
understand what you did, you will be able to return to your code the next time you want to
do something similar. To help you with this you should:

1. Always run your code from an R script... always! These are provided for each practical;
2. Annotate you scripts with comments. These are prefixed by a hash (#) in the code;

3. Save your R script to your folder;
;i1 {#To summarise} To summarise...

e You should always use a script (a text file containing code) for your code which can be
saved and then re-run at a later date.

¢ You can write your own code into a script, copy and paste code into it or use an existing
script (for example as provided for each of the R/RStudio practicals in this module).

e To open a new R script go to File > New File > R Script to open a new R file, and
save it with a sensible name.

e To load an existing script file go to File > Open File and then navigate to your file.
Or, if you have recently opened the file, go to File > Recent Files >.

o It is good practice to set the working directory at the beginning of your R session. This
can be done via the menu in RStudio Session > Set Working Directory > This
points the R session to the folder you choose and will ensure that any files you wish to
read, write or save are placed in this directory.

e To run code in a script, place the cursor on the line of code and then run by pressing the
‘Run’ icon at the top left of the script pane, or by pressing Ctrl Enter (PC) or Cmd
Enter (Mac). ::

1.2.5 Your first R code

In this section you will undertake a few generic operations. You will:

o undertake assignment: the allocation of values to an R object.
e use assignment to create a vector of elements and a matrix of elements.
o undertake operations on R objects.

« apply some functions to R objects (functions nearly always return a value).

11

« access some of R in-built data to examine a data table (or data.frame which is like an
Excel spreadsheet).

e do some basic plotting, including scatter plots and histograms.

e create data summaries.

On the way you will also be introduced to indexing.

First, you should create a new R script (see above) and save it as week1.R in the working
directory you are using for this practical. This should be the Week1 sub-directory you created in
the GEOG162 folder. Note that you should create a separate folder for each week’s practical.

1.2.5.1 Assignment
The command line prompt in the Console window, the >, is an invitation to start typing in
your commands.

Write the following into your script: 3+5 and run it. Recall that code is run done by either by
pressing the Run icon at the top left of the script pane, or by pressing Ctrl Enter (PC) or
Cmd Enter (Mac).

3+5

(1] 8

Here the result is 8. The [1] that precedes the output it formally indicates, first requested
element will follow. In this case there is just one element. The > indicates that R is ready for
another command.

Now type the following in to your script and run it:

y <- 3+5
y

(1] 8

Here the value of the 3+5 has been assigned to y. The syntax y <- 3+5 can be read as y
gets 3+5. When y is invoked its value is returned (8).

For the purposes of this module, in R the equals sign (=) is the same as <-, a left diamond
bracket < followed by a minus sign -. This too is interpreted by R as is assigned to or gets
when the code is read right to left.

Now copy and paste the following into your R script and run both lines:

12

x <- matrix(c(1,2,3,4,5,6,7,8), nrow = 4)
y = matrix(1:8, nrow = 4, byrow = T)

You should see the x appear with the y in the Environment pane. y has now been overwritten
with a new assignment. If you click on the icon next to them, you will get a ‘spreadsheet’ view
of the data you have created.

Of course you can also enter the following in the console and see what is returned:

X

[,1] [,2]
[1,] 1 5
[2,] 2 6
(3,] 3 7
[4,] 4 8
y

[,11 [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8

Note In the code snippets above you have used parentheses - round brackets. Different kinds
of brackets are used in different ways in R. Parentheses are used with functions, and contain
the arguments that are passed to the function, separated by commas ().

In this case the functions are c() and matrix(). The function c() combines or concatenates
elements into a vector, and matrix() creates a matrix of elements in a tabular format.

In the line of code x = matrix(c(1,2,3,4,5,6,7,8), nrow = 4), the arguments passed to
the matrix() function are the vector of values ¢(1,2,3,4,5,6,7,8) and nrow = 4. Other
kinds of brackets are used in different ways as you will see later.

One final thing to note is that the matrix is y is has the numbers 1 to 8, but this is specified by
1:8. Try entering 3:65, 19:11, and 1.5:5 to see how the colon (:) works in this context.

13

1.2.5.2 Operations

Now you can undertake operations on R objects and apply functions to them. Write the
following code into your script and then run it:

x is a matrix

X

(.11 [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8

multiplication

X*2

[,11 [,2]
[1,] 2 10
[2,] 4 12
(3,] 6 14
[(4,] 8 16

sum of x
sum(x)

[1] 36

mean of x
mean (x)

[1] 4.5

Operations can be undertaken directly using mathematical notation like * for multiplication
or using functions like max to find the maximum value in an R object.

14

1.2.5.3 Functions
Functions are always followed by parenthesis (round brackets) (). These are different from
square and curly brackets [] and { }. Functions always return something, a result if you

like, and have the generic form:

don't run this or write this into your script!
result = function(value or R object, other parameters)

Do not run or enter this code in your script - it is an example!

1.2.5.4 Data Tables

Here we will load a data table in data.frame (like a spreadsheet) in R/RStudio. R has number
of in-built datasets that we can use the code below loads one of these:

data(mtcars)
class(mtcars)

[1] "data.frame"

Have a look at what is loaded by listing the objects in the current R session

1sQO)

[1] llmtcarsll "X" "yll

You should see the mtcars object. You can examine this data in a number of ways

the structure of mtcars
str(mtcars)

'data.frame': 32 obs. of 11 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$cyl :num 6646868446 ...

$ disp: num 160 160 108 258 360 ...

$ hp : num 110 110 93 110 175 105 245 62 95 123 ...

$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$wt : num 2.62 2.88 2.32 3.21 3.44 ...

15

$ gsec: num
$ vs : num
$ am
$ gear:

$ carb:

. num
num
num

16.5 17 18.6 19.4 17 ...

060011010111

11100000060 ...
4443333444 ...
4411214224 ...

the first six rows (or head) of mtcars

head (mtcars)

Mazda RX4

Mazda RX4 Wag

Datsun 710

Hornet 4 Drive
Hornet Sportabout 18.

Valiant

mpg cyl disp hp
21.0 6 160 110
21.0 6 160 110
22.8 4 108 93
21.4 6 2568 110

7 8 360 175
18.1 6 225 105

drat
.90
.90
.85
.08
.15
.76

N W wwww

W wwNNDN

wt

.620
.875
.320
.215
.440
.460

gsec vs am gear carb

16.
17.
18.
19.
17.
20.

46
02
61
44
02
22

0

_ O, ~ O

O O O - = =

The mtcars object is a data.frame, a kind of data table, and it has

which are all numeric. The code below prints it all out to the console:

mtcars

Mazda RX4

Mazda RX4 Wag

Datsun 710

Hornet 4 Drive
Hornet Sportabout

Valiant
Duster 360
240D
230
280
280C
450SE
450S8L
450SLC

Merc
Merc
Merc
Merc
Merc
Merc
Merc

Cadillac Fleetwood
Lincoln Continental
Chrysler Imperial

Fiat 128

mpg cyl disp
21.0 6 160.0
21.0 6 160.0
22.8 4 108.0
21.4 6 258.0
18.7 8 360.0
18.1 6 225.0
14.3 8 360.0
24.4 4 146.7
22.8 4 140.8
19.2 6 167.6
17.8 6 167.6
16.4 8 275.8
17.3 8 275.8
15.2 8 275.8
10.4 8 472.0
10.4 8 460.0
14.7 8 440.0
32.4 4 78.7

hp drat
110 3.90
110 3.90
93 3.85
110 3.08
175 3.15
105 2.76
245 3.21
62 3.69
95 3.92
123 3.92
123 3.92
180 3.07
180 3.07
180 3.07
205 2.93
215 3.00
230 3.23
66 4.08

16

N OO O w wdh wWwwwwwwww NN

wt

.620
.875
.320
.215
.440
.460
.570
.190
.150
.440
.440
.070
.730
.780
.250
.424
.345
.200

gsec vs

16

.46
17.
18.
19.
17.
20.
15.
20.
22.
18.
18.
17.
17.
18.
17.
17.
17.
19.

02
61
44
02
22
84
00
90
30
90
40
60
00
98
82
42
47

P OO0 0000 FrRrFPRPLPOFPLROFL,EL, OO

4

W W w b
N R P DD

a number of attributes

am gear carb
4

P O O O O O O OO OO O0OOOO K kK,
W W wWwwwwdbd bbb dbhowwowwdbd b
DD P W WD PdPNONPPEREDNDR R DD

Honda Civic
Toyota Corolla
Toyota Corona
Dodge Challenger
AMC Javelin
Camaro 7228
Pontiac Firebird
Fiat X1-9
Porsche 914-2
Lotus Europa
Ford Pantera L
Ferrari Dino
Maserati Bora
Volvo 142E

Data frames are ‘flat’ in that they typically have a rectangular layout like a spreadsheet, with
rows typically relating to observations (individuals, areas, people, houses, etc) and columns
relating to their properties or attributes (height, age, etc). The columns in data frames can
be of different types: vectors of numbers, factors (classes) or text strings. In matrices all of
the columns have to be off the same type. Data frames are central to what we will do in R.

30.
33.
21.
15.
15.
13.
19.
27.
26.
30.
15.
19.
15.
21.

O N0 P O WD WN O oo b

EN S e e T N N O N6 Jlf oo B T N U N

75.

71.
120.
318.
304.
350.
400.

79.
120.

95.
351.
145.
301.
121.

O O OO KFHr WOOOOO Fr mkFr, N

52
65
97
150
150
245
175
66
91
113
264
175
335
109

1.2.5.5 Plotting the data: ‘Hello World!’

DWW W dWwWwWWN WD

.93
.22
.70
.76
.15
.73
.08
.08
.43
LTT
.22
.62
.54
11

N OWNWEFELEDNEFE,EWWWWNDER -

.615
.835
.465
.520
.435
.840
.845
.935
.140
.513
.170
.770
.570
.780

18.
19.
20.
16.
17.
15.
17.
18.
16.
16.
14.
15.
14.
18.

52
90
01
87
30
41
05
90
70
90
50
50
60
60

H O OO Fr,r OFr OO OO = KB =

B R R R R R PR, O0 0000 R

OO O OO DWWW W WD

The code below creates a plot of 2 variables counts in the data: mpg and disp.

plot(disp ~ mpg,

data

mtcars, pch=16)

17

N 00O OO PEPNNEFEDNPDPENNNEE =N

‘ []
— [J
o® o L
a S - s
R ™ o o0 o
© [J
o © °
8_ [] .: [J °
— ([] : o o
[[[[[
10 15 20 25 30
mpg

The option pch=16 sets the plotting character to a solid black dot. More plot characters are
available - examine the help for points() to see these:

?points

starting httpd help server ... done

This plot can be improved greatly. We can specify more informative axis labels, change size
of the text and of the plotting symbol, and so on.

We can also specify the same plot by passing named variables to the plot function directly
as well as other parameters, as in the figure. Notice how the syntax for this is different to the
plot function above, and the different parameters that are passed to the plot () function:

plot(x = mtcars$mpg, y = mtcars$disp, pch = 1, col = "dodgerblue",

cex = 1.5, xlab = "Miles per Gallon", ylab = "Displacement",
main = "Hello World!")

18

Hello World!

S o
5 i O o
%8_ 00 0O
g © o0 O
o l o
& OFHOo oo
S — (O)¥e) O
- I I I I O ﬁg O =
10 15 20 25 30

Miles per Gallon

Figure 1.3: A scatter plot.

Notice how the dollar sign ($) is used to access variables in the mtcars data table compared
to the first plot command, which specified data = mtcars

1.2.5.6 Data summaries and indexing

We may for example require information on variables in mtcars. The summary function is very
useful:

summary (mtcars)
mpg cyl disp hp
Min. :10.40 Min. :4.000 Min. 711 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
drat wt gsec Vs
Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000

1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000

19

.695 Median :3.325 Median :17.71 Median :0.0000
Mean .597 Mean :3.217 Mean :17.85 Mean :0.4375

Median :3
3

3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
14

Max. .930 Max. :5.424 Max. :22.90 Max. :1.0000
am gear carb
Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :4.000 Median :2.000
Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000 Max. :8.000

This shows different summaries of the individual attributes in mtcars.

The main R graphics function is plot (). In addition to plot () there are functions for adding
points and lines to existing graphs, for placing text at specified positions, for specifying tick
marks and tick labels, for labelling axes, and so on.

There are various other alternative helpful forms of graphical summary. A helpful graphical
summary for the mtcars data frame is the scatterplot matrix, shown in Figure 1.4.

return the names of the mtcars variables
names (mtcars)

[1] llmpgll llcylll lldispll ||hpll ||drat n “Wt n IIqsecll “VS" IIamll IIgearll
[11] "carb"

return the 3rd to 7th names
names (mtcars) [c(3:7)]

[1] "diSp" "hp" “drat" ||th "qSGC"

check what this does
c(3:7)

[1] 34567

plot the 3rd to 7th variables in mtcars
plot (mtcars[, c(3:7)], cex = 0.5,
col = "red", upper.panel=panel.smooth)

20

https://bookdown.org/lexcomber/GEOG1400/index.html#fig:ch1fig4

50 150 300 2 3 45
L1111 I T

D o oY
. e %o o o o8 o oo os I~
C | P i | W E:
o oo - o
o o - o ° % 8.8 — 8
8 _ o o o o
™ - & @ o ©° %00 o,
4 o 0 ©0 q, p % ° M/@ o
o _'Qg%O °° P ° o ° ° ® ¥
[T
o
' d ' \d o
Ln
o o o o —
Y ° 8 ° ° o o [
2 N e, o drat o %280 0 og $B° =
00 00 | o 0@ % of ° o [<
a® s 2 o o Py a ™
-] o Cad A 5
< 4 8 ° 8 o o,
_ @g °o®d o:i“f o o [% $he Wt 2 E%008
N g 8%y o 80° o S %
v v v v L
N
?cg"s ‘o o% :és ° 2 OQ%“ 0| o°°°o°o Sg q C
0o g 8q, 5 o 0% °o® 88 o o B o§ o 0 o o0 oo ¥ Sec I~ ©
° 9 & °o 8, 4 a °a2° -
L T 1 1T T T 1T 1
100 300 30 40 50 16 20

Figure 1.4: Multiple scatterplots.

The results show the correlations between the variables in the mtcars data frame, and the
trend of their relationship is included with the upper.panel=panel.smooth parameter passed
to plot.

There are number of things to notice here (as well as the figure). In particular note the use of
the vector c(2:7) to subset the columns of mtcars:

e In the second line, this is was used to subset the vector of column names created by
names (mtcars).

¢ In the third line, it was printed out. Notice how 3:7 printed out all the number between
3 and 7 - very useful.

e For the plot, the vector was passed to the second argument, after the comma, in the
square brackets [,] to indicate which columns were to be plotted.

The referencing in this way (or indexing) is very important: the individual rows and columns
of 2 dimensional data structures like data frames, matrices, tibbles etc can be accessed by
passing references to them in the square brackets.

1st row
mtcars[1,]

21

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX¥4 21 6 160 110 3.9 2.62 16.46 0 1 4 4

3rd column
mtcars|[,3]

[1] 160.0 160.0 108.0 258.0 360.0 225.0 360.0 146.7 140.8 167.6 167.6 275.8
[13] 275.8 275.8 472.0 460.0 440.0 78.7 75.7 71.1 120.1 318.0 304.0 350.0
[25] 400.0 79.0 120.3 95.1 351.0 145.0 301.0 121.0

a selection of rows
mtcars[c(3:5,8),]

mpg cyl disp hp drat wt qgsec vs am gear carb

Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2

Such indexing could of course have been assigned to a R object and used to do the subsetting;:

x = c(3:7)
names (mtcars) [x]

[1] "diSp" "hp" “drat“ "Wt" "qSGC"

plot(mtcars[,x], cex = 0.5, col = "red")

22

50 150 300 2 3 45
L1111 I T

® o k7 o¥
H 8 oo ® o o 028 o o0 n
disp PRI N2 O I e S
o 0o - o
u:‘g’ ° wgno of %m%ﬁo@o ° % o8 °+ 8
8 _ o o o o
™ - & @ o ©° %00 © oo
- ° °p 00 % hp 00 ° ° &.o & ° agOB
8 - “%0 °° P ° 606:0° d a8 ® ggoa 9
o
' d ' \d o
Ln
o o o o —
Y ° 8 ° ? ° o o [
o%® 00 o . o o drat o °%°3>%°°° L8 %8 P o~
_ @0 0 0 %) o e oPeo 3 o sy o - g
-] o Cad A 5
&] &? °089> ° o ﬁ°°§ 8, o f 39 °°g°£°o Wt 3:° ”;éo":od’ o
N g 8¢, o~ 80° o *%
v v v v L
N
23% %o 2 P o o.ge 000 80 q -
oc:as 8q, 5 o 0% ° f,%ssﬂ“’o o B o? o ° oo gooo 2%0 ¥ Sec I~ ©
° 9 & °o 8, 4 R °a2° -
T 1T T 1 1T T T 1T 1
100 300 30 40 50 16 20

Thus indexing allows specific rows and columns to be extracted from the data as required.

Note You have encountered a second type of brackets, square brackets [1. These are used
to reference or index positions in a vector or a data table.

Consider the object x above. It contains a vector of values, 3,4,5,6,7. Entering x[1] would
extract the first element of x, in this case 3. Similarly x[4] would return the 4th element and
x[c(1,4)] would return the 1st and 4th elements of x.

However, in the examples above that index the 2-dimensional mtcars object, the square brack-
ets are used to index row and column positions. The syntax for this is [rows, columns].
We will be using such indexing throughout this module.

1.2.5.7 Packages

The base installation of R includes many functions and commands. However, more often we
are interested in using some particular functionality, encoded into packages contributed by
the R developer community. Installing packages for the first time can be done at the command
line in the R console using the install.packages command as in the example below to install
the tmap library or via the RStudio menu via Tools > Install Packages.

When you install these packages it is strongly suggested you also install the dependencies.
These are other packages that are required by the package that is being installed. This can
be done by selecting check the box in the menu or including dep=TRUE in the command line
as below (don’t run this yet!):

23

don't run this!
install.packages("tidyverse", dep = TRUE)

You may have to set a mirror site from which the packages will be downloaded to your
computer. Generally you should pick one that is nearby to you.

Further descriptions of packages, their installation and their data structures will be given as
needed in the practicals. There are literally 1000s of packages that have been contributed
to the R project by various researchers and organisations. These can be located by name at
http://cran.r-project.org/web/packages/available_packages_by_name.html if you know the
package you wish to use. It is also possible to search the CRAN website to find packages to
perform particular tasks at http://www.r-project.org/search.html. Additionally many pack-
ages include user guides and vignettes as well as a PDF document describing the package and
listed at the top of the index page of the help files for the package.

As well as tidyverse you should install the sf package and dependencies. So we have 2
packages to install:

o sf for spatial data and spatial objects

o tidyverse for lots of lovely data science things - see https://www.tidyverse.org

You could do this in one go and this will take a bit of time:

install.packages(c("sf", "tidyverse"), dep = TRUE)

Remember: you will only have to install a package once!! So when the above code has run
in your script you should comment it out. For example you might want to include something
like the below in your R script.

packages only need to be loaded once
install.packages(c("sf", "tidyverse"), dep = TRUE)

Once the package has been installed on your computer then the package can be called using
the 1ibrary () function into each of your R sessions as below.

library(tidyverse)

Warning: package 'tidyverse' was built under R version 4.5.2

Warning: package 'ggplot2' was built under R version 4.5.1

24

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://www.r-project.org/search.html
https://www.tidyverse.org/

Warning: package 'tibble' was built under R version 4.5.1
Warning: package 'tidyr' was built under R version 4.5.1
Warning: package 'readr' was built under R version 4.5.1
Warning: package 'purrr' was built under R version 4.5.1
Warning: package 'dplyr' was built under R version 4.5.1
Warning: package 'forcats' was built under R version 4.5.1

Warning: package 'lubridate' was built under R version 4.5.1

-- Attaching core tidyverse packages ———————--———————————————- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.2

v ggplot2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

vV purrr 1.1.0

-- Conflicts ---————----—-"-"-""""""""""""""" tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to becor

library(sf)

Warning: package 'sf' was built under R version 4.5.1

Linking to GEOS 3.13.1, GDAL 3.11.0, PROJ 9.6.0; sf_use_s2() is TRUE

1.3 Knowing Merseyside

1.3.1 Merseyside districts
Now we use these basic R command and newly installed packages to start our initial exploration
by using some existing secondary dataset from the Census 2021.

In R we normally read in tabular dataset from .csv format. In your Week 1 data folder, you
can find one .csv dataset: merseyside.csv. You can open them in excel to have a look, but
here we are using R instead of Excel to load and examine them.

25

1.3.1.1 Loading tabular data

The survey data can be loaded into RStudio using the read.csv function.

However, you will need to tell R where to get the data from. The easiest way to do this is
to use the menu if the R script file is open. Go to Session > Set Working Directory >
To Source File Location to set the working directory to the location where your weekl.R
script is saved. When you do this you will see line of code print out in the Console (bottom
left pane) similar to setwd("SomeFilePath"). You can copy this line of code to your script
and paste into the line above the line calling the read.csv function.

use read.csv to load a CSV file
this is assignment to an object called “df°
df = read.csv(file = "merseyside.csv", stringsAsFactors = TRUE)

The stringsAsFactors = TRUE parameter tells R to read any character or text variables as
classes or categories and not as just text.

You could inspect the help for the read. csv function to see the different parameters and their

default values:

help(read.csv)
or
?read.csv

Functions always return something and in this case read. csv() function has returned a tabular
R object with 5 records and 14 fields. This has been assigned to df.

Finally in this section, lets have a look at the data. This can be done in a number of ways.

e you could look at the df object by entering df in the Console. However this is not
particular helpful as it simply prints out everything that is in df to the Console.

e you could click on the df object in the Environment pane and this shows the structure
of the attributes in different fields.

o you could click on the little grid-like icon next df in the Environment pane to get a View
of the data and remember to close the tab that opens!.

e or you could use some code as in the examples below.

First, let’s have a look at the internal structure of the data using the str function:

str(df)

26

'data.frame': 5 obs.
: Factor w/ 5 levels "E08000011","E08000012",..:
: Factor w/ 5 levels "Knowsley","Liverpool",..:

: int

&~

HF P P P P P PH H L H L

LAD21CD
District
Population
Households

Working.population:
Full.time.students:

Unemployed
Age.over.65
Disability

No.central.heating:

Overcrowding

Working.from.home :

of

: int

int
int

: int
: int
: int

int

: int

int

12 variables:

154519 486088 183248 279233 320199
66073 207491 81011 123075 143253
69495 205749 82622 124596 139500
7050 59628 7582 12636 14642

3852 13894 4076 6143 6542

26242 74322 37642 64763 70391
34990 105962 40829 61134 73088
1020 4822 1003 1965 2125

1892 7352 1888 2700 2355

14880 53721 18973 34750 37299

12345
12435

The head function does this by printing out the first six records of the data table and you may
need to scroll up and down in the Console pane to see all of what is returned.

he

O d W N O w N

gD WwN -

1020
4822
1003
1965
2125

ad(df)

LAD21CD District Population Households Working.population
E08000011 Knowsley 154519 66073 69495
E08000012 Liverpool 486088 207491 205749
E08000013 St. Helens 183248 81011 82622
E08000014 Sefton 279233 123075 124596
E08000015 Wirral 320199 143253 139500
Full.time.students Unemployed Age.over.65 Disability No.central.heating

7050 3852 26242 34990

59628 13894 74322 105962

7582 4076 37642 40829

12636 6143 64763 61134

14642 6542 70391 73088
Overcrowding Working.from.home
1892 14880
7352 53721
1888 18973
2700 34750
2355 37299

Another way to explore the data is through the summary function:

27

summary (df)

LAD21CD District Population Households
E08000011:1 Knowsley :1 Min. :154519 Min. : 66073
E08000012:1 Liverpool :1 1st Qu.:183248 1st Qu.: 81011
E08000013:1 Sefton 01 Median :279233 Median :123075
E08000014:1 St. Helens:1 Mean 1284657 Mean :124181
E08000015:1 Wirral 01 3rd Qu.:320199 3rd Qu.:143253

Max. 1486088 Max. 1207491

Working.population Full.time.students Unemployed Age.over.65
Min. : 69495 Min. : 7050 Min. : 3852 Min. 126242
1st Qu.: 82622 1st Qu.: 7582 1st Qu.: 4076 1st Qu.:37642
Median :124596 Median :12636 Median : 6143 Median :64763
Mean 1124392 Mean :20308 Mean : 6901 Mean : 54672
3rd Qu.:139500 3rd Qu.:14642 3rd Qu.: 6542 3rd Qu.:70391
Max. 1205749 Max. :59628 Max. :13894 Max. 174322

Disability No.central.heating Overcrowding Working.from.home
Min. : 34990 Min. :1003 Min. :1888 Min. 114880
1st Qu.: 40829 1st Qu.:1020 1st Qu.:1892 1st Qu.:18973
Median : 61134 Median :1965 Median :2355 Median :34750
Mean : 63201 Mean 12187 Mean 13237 Mean :31925
3rd Qu.: 73088 3rd Qu.:2125 3rd Qu.:2700 3rd Qu.:37299
Max. 1105962 Max. 14822 Max. 17352 Max. :53721

Finally in this section, we come back to the dollar sign ($). This is used to refer to or extract
an individual named field or variable in an R object, like df.

The code below prints out the Population attribute and generates a summary of its values:

extract an individual variable
df$Population

[1] 154519 486088 183248 279233 320199

generate a summary of an individual variable
summary (df $Population)

Min. 1st Qu. Median Mean 3rd Qu. Max.
154519 183248 279233 284657 320199 486088

28

And of course we can use such operations to assign the result to new R objects. The code below
extracts three variables from df, assigns them to x, y and z, and then uses the data. frame func-
tion to convert these into a new data.frame object called my_df

extract three variables, assigning them to temporary R objects
df$District

df$Working.population

df$Full.time.students

create a data.frame from these, naming the new variables

my_df = data.frame(district = x,worker = y,student = z)

H N < W H
I

You should have a look at what you have created:

head (my_df)

district worker student
1 Knowsley 69495 7050
2 Liverpool 205749 59628
3 St. Helens 82622 7582
4 Sefton 124596 12636
5 Wirral 139500 14642

summary (my_df)

district worker student
Knowsley :1 Min. : 69495 Min. : 7050
Liverpool :1 1st Qu.: 82622 1st Qu.: 7582
Sefton 01 Median :124596 Median :12636
St. Helens:1 Mean 1124392 Mean 120308
Wirral 01 3rd Qu.:139500 3rd Qu.:14642
Max. 1205749 Max. 159628

The temporary R objects can be removed from the Environment using the rm function and
a combine vector function, c() that you encountered in Week 19, that takes a vector of object
names (hence they are in quotes) as its arguments.

rm(list - C("X",”y","Z"))

29

1.3.1.2 Basic data manipulation

Now we can do some basic data manipulation to know Merseyside more from the data per-
spective.

What is the total population in Merseyside?

sum (df $Population)

[1] 1423287

What is the total number of full-time students in Merseyside?

sum(df$Full.time.students)

[1] 101538

Which district in Merseyside has the most working population?

max (df $Working.population)

[1] 205749

Yes, using max () R returns use the greatest value in Working.population column. If we check
back to the dataset, we know it is Liverpool. Instead, we can also ask R to tell us the answer:

df$District [which.max(df$Working.population)]

[1] Liverpool
Levels: Knowsley Liverpool Sefton St. Helens Wirral

Here, we request R to return the District which has the maximum value of the Working
population.

Then, we can calculate the total number of workers that working from home:

sum(df$Working.from.home)

[1] 159623

30

What is the proportion of working population actually work from home in Merseyside? Yes,
we need to use a division calculation of the total number of working from home vs. all the
working population. R can do it by:

sum(df$Working.from.home) / sum(df$Working.population)

[1] 0.2566443

So the answer is 25.7% for the whole Merseyside - but which district has the highest proportion
and which as the lowest? You may have your own guessing. But let R do the calculation:

df$Prop.WFH = df$Working.from.home / df$Working.population #add a new column called Prop.WFH
df #print out the df

LAD21CD District Population Households Working.population

1 EO8000011 Knowsley 154519 66073 69495

2 E08000012 Liverpool 486088 207491 205749

3 E08000013 St. Helens 183248 81011 82622

4 E08000014 Sefton 279233 123075 124596

5 E08000015 Wirral 320199 143253 139500
Full.time.students Unemployed Age.over.65 Disability No.central.heating

1 7050 3852 26242 34990 1020

2 59628 13894 74322 105962 4822

3 7582 4076 37642 40829 1003

4 12636 6143 64763 61134 1965

5 14642 6542 70391 73088 2125
Overcrowding Working.from.home Prop.WFH

1 1892 14880 0.2141161

2 7352 53721 0.2610997

3 1888 18973 0.2296362

4 2700 34750 0.2789014

5 2355 37299 0.2673763

Here we ask R to add a new column named Prop.WFH which is the working from home
proportion that calculated by the number of working from home people in each district divided
by the total working population in that district. R will automatically do it row-by-row. We
then print out the df, you may find at the very right end of the tabular, there is a new column
called Prop.WFH.

You already know how to get the max of the district by the value, and we can also do that for
the minimum:

31

df$District [which.max(df$Prop.WFH)]

[1] Sefton
Levels: Knowsley Liverpool Sefton St. Helens Wirral

df$District[which.min(df$Prop.WFH)]

[1] Knowsley
Levels: Knowsley Liverpool Sefton St. Helens Wirral

Have you got the right answer?

1.3.1.3 Your first map for Merseyside

Now let’s try to do our first map in R and allow yourself know more about Merseyside.

We will use the library sf and tmap to help us at here. Run the install codes if you haven’t
install them. Remember: you will only have to install a package once!!

if (!requireNamespace("tmap")) {

install.packages("tmap",dep =TRUE)
}

Loading required namespace: tmap

if (!requireNamespace("sf")) {
install.packages("sf",dep =TRUE)
}

When they have been installed, we can start using them

library(sf)
library(tmap)

Warning: package 'tmap' was built under R version 4.5.1

32

You may find in Week 1 data, we have another file named merseyside_ districts.gpkg. A
GeoPackage (GPKG) is a file-based format designed for storing geographic data. It supports
the efficient storage and exchange of spatial datasets and can be readily used across GIS
software such as QGIS and ArcGIS, as well as in programming environments including R and
Python.

We first read it in by using the st_read() command in library sf.

sf <- st_read("merseyside_districts.gpkg")

Reading layer “lad_may_2025_uk_bgc_v2_4306843991635065087__lad_may_2025_uk_bgc_v2' from data
using driver ~GPKG'

Simple feature collection with 5 features and 8 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: =xmin: 318351.7 ymin: 377515.4 xmax: 361796.3 ymax: 422866.5

Projected CRS: 0SGB36 / British National Grid

The fastest way to map it is the qtm() function.

qtm(sf)

33

You can also add the district names on the map - which column in the sf contains district
name? Use names(sf) to check for it.

Yes, the column should be LAD25NM. Now let’s ask qtm() to also show the district names.

qtm(sf,text="LAD25NM")

But what if we want to make some meaningful maps, rather than just the boundaries of these
five districts of Merseyside?

1.3.1.4 Link tabular data to geographical boundaries

Recall that in our df, we have 14 columns, containing different information about the districts.
We can get all their names by using names ().

names (df)
(1] "LAD21CD"
[4] "Households"
[7] "Unemployed"
[10] "No.central.heating"

[13]

"Prop.WFH"

"District"
"Working.population"
"Age.over.65"
"Overcrowding"

34

"Population"
"Full.time.students"
"Disability"
"Working.from.home"

We can do the same thing for our geographical dataset to see what it includes:

names (sf)

[1] "LAD25CD" "“LAD25NM" "LAD25NMW" "BNG_E" "BNG_N" "LONG" "LAT"
[8] "GlobalID" "geom"

We can also show the whole sf as

st

Simple feature collection with 5 features and 8 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: =xmin: 318351.7 ymin: 377515.4 xmax: 361796.3 ymax: 422866.5
Projected CRS: 0SGB36 / British National Grid

LAD25CD LAD25NM LAD25NMW BNG_E BNG_N LONG LAT

1 E08000011 Knowsley 344762 393778 -2.832979 53.43789

2 E08000012 Liverpool 339359 390556 -2.913680 53.40833

3 E08000013 St. Helens 353413 395992 -2.703093 53.45862

4 E08000014 Sefton 334282 398835 -2.991771 53.48213

5 E08000015 Wirral 329109 386965 -3.067034 53.37478
GloballID geom
1 {B4196BFE-EE90-4C31-ABD5-C7E743AE2F9B} MULTIPOLYGON (((341447.1 40...
2 {4FB47E7A-EF4E-4B9E-BF75-D4FCO59CDE61} MULTIPOLYGON (((338860.9 39...
3 {943F0C6B-EB30-4C00-A42B-F6B3AEC3EFEE} MULTIPOLYGON (((349111.4 40...
4 {C6FD0O73B-CBEB-4E78-934A-A8FD11A20F0A} MULTIPOLYGON (((336374.5 42...
5 {88E9328B-371C-469C-91F1-3479C77D6950} MULTIPOLYGON (((331364.9 39...

Now we see that sf includes also the five districts, but also other geographical information.
You may notice that although different column names, the first two columns of both df and
sf are the district code and district name. This means what potentially we can link this two
dataset together - appendix the df to sf to enrich the attributes of our geographical dataset.

sf2 <- left_join(sf, df,by=c("LAD25NM"="District"))

let’s check out the new sf2 by View() it:

View(sf2)

In the open tab, we see all the df columns are now also attached to the sf, linking by the
district names.

35

1.3.1.5 Choropleth map of Merseyside districts
Now, we can use those new columns we attached from df to sf2 to make some meaningful
choropleth maps! Here we make use of the mapping functions in tmap to do the work for us.

Remember to run library(tmap) if you haven'’t.

tm_shape(sf2) + tm_polygons("Overcrowding") + tm_text ("LAD25NM")

Overcrowding
(] 1,000 to 2,000
(] 2,000 to 3,000
(3,000 to 4,000
([4,000 to 5,000
[5.000 to 6,000
@ 5.000 to 7,000
@ 7.000 to 8,000

tm_shape(sf2) + tm_polygons("Overcrowding",style = "jenks",n=3) + tm_text("LAD25NM")

-- tmap v3 code detected ----—————————--—————————————

[v3->v4] “tm_polygons() ™ : instead of “style = "jenks" , use fill.scale =
“tm_scale_intervals() ~.
i Migrate the argument(s) 'style', 'n' to 'tm_scale_intervals(<HERE>)'

36

Overcrowding
(J18s8to1,892
(] 1892t02,700
B 270010 7,352

E] Missing

tm_shape(sf2) + tm_polygons("Overcrowding",style = "jenks",n=3) + tm_text("LAD25NM") + tm_te:

-- tmap v3 code detected

[v3->v4] “tm_polygons() ™ : instead of “style = "jenks" , use fill.scale =

“tm_scale_intervals()~.
i Migrate the argument(s) 'style', 'n' to 'tm_scale_intervals(<HERE>)'

37

Overcrowding
(J18s8to1,892
(] 1892t02,700
B 270010 7,352

E] Missing

tm_shape(sf2) + tm_polygons("Disability",style = "jenks",n=3,palette="Reds") + tm_text("LAD2

-- tmap v3 code detected --———---————————————-————————— -

[v3->v4] “tm_polygons() ™ : instead of “style = "jenks" , use fill.scale =

“tm_scale_intervals()~.

i Migrate the argument(s) 'style', 'n', 'palette' (rename to 'values') to
'tm_scale_intervals(<HERE>)'

[cols4all] color palettes: use palettes from the R package cols4all. Run

“colsd4all::c4a_gui()~ to explore them. The old palette name "Reds" is named

"brewer.reds"
Multiple palettes called "reds" found: "brewer.reds", "matplotlib.reds". The first one, "bre

38

Disability

() 34,990 to 40,829
() 40,829t0 73,088
@ 73.088 to 105,962

D Missing

sf2$NoCentralHeating _rate = sf2$No.central.heating / sf2$Households * 100

tm_shape(sf2) + tm_polygons("NoCentralHeating rate",style = "jenks",n=3,palette="Greens") +

-— tmap v3 code detected

[v3->v4] “tm_polygons() : instead of “style = "jenks" , use fill.scale =

“tm_scale_intervals()~.

i Migrate the argument(s) 'style', 'n', 'palette' (rename to 'values') to
'tm_scale_intervals (<HERE>)'

[cols4all] color palettes: use palettes from the R package cols4all. Run

“cols4all::c4a_gui()~ to explore them. The old palette name "Greens" is named

"brewer.greens"
Multiple palettes called "greens" found: "brewer.greens", "matplotlib.greens". The first one

39

NoCentralHeating_rate
((J1238t01.238
(J1238t01.507
) 1597 10 2.324

D Missing

1.3.2 Merseyside neighbourhoods

Finally you can save your R script, week1.R it should look something like the below:
Week 1 script

assignment

3+5

<- 3+5
have a look at y

H <

<

make matrices

<- matrix(c(1,2,3,4,5,6,7,8), nrow = 4)
= matrix(1:8, nrow = 4, byrow = T)

have a look at these

X is a matrix

MW oH<S K HF<S HH

*

operations

40

multiplication
x*2

sum of x
sum(x)

mean of x

mean (x)

load some inbuilt data
data(mtcars)

inspect the class of mtcars
class(mtcars)

list all objects in my working environment
1s0O

the structure of mtcars

str(mtcars)

the first six rows (or head) of mtcars
head (mtcars)

print out all of mtcars
mtcars

plot mpg against disp
plot(disp ~ mpg, data = mtcars, pch=16)

the help for points
?points

an enhanced plot using a different notation
plot(x = mtcars$mpg, y = mtcars$disp, pch =1, col = "dodgerblue",
cex = 1.5, xlab = "Miles per Gallon", ylab = "Displacement", main = "Hello World!")

summaries fo all the variables in mtcars
summary (mtcars)

return the names of the mtcars variables
names (mtcars)

return the 3rd to 7th names

names (mtcars) [c(3:7)]

check what this does

c(3:7)

41

plot the 3rd to 7th variables in mtcars
plot(mtcars[, c(3:7)], cex = 0.5,
col = "red", upper.panel=panel.smooth)

1st row

mtcars[1,]

3rd column
mtcars|[, 3]

a selection of rows
mtcars[c(3:5,8),]

assign 3:7 to x

x = c(3:7)

get the 3rd to 7th names in mtcars using x
names (mtcars) [x]

recreate the plot

plot(mtcars[,x], cex = 0.5, col = "red")

some tasks

elasticband <- data.frame(stretch=c(46,54,48,50,44,42,52),
distance=c(148,182,173,166,109,141,166))

have a look

elasticband

don't run this!
install.packages("tidyverse", dep = TRUE)

packages only need to be loaded once
install the packages in one go and THEN comment out
install.packages(c("sf", "tidyverse"), dep = TRUE)

*

load a package
library(sf)

Answers to tasks

Task 1

plot(stretch~distance, data = elasticband)

or

plot(elasticband$stretch, elasticband$distance)

Task 2
hist (mtcars$mpg)

42

hist(mtcars$mpg, xlab='Miles per Gallon',

main='Histogram of MPG',
breaks = 15,
col = 'DarkRed')

hist(mtcars$mpg, prob = T,

xlab='Miles per Gallon',
main='Histogram of MPG',
breaks = 15,

col = 'DarkRed',

border = "#FFFFBF")

add the probability density trend
lines(density(mtcars$mpg, na.rm=T),col='salmon',blwd=2)
show the frequencies at the bottom - like a rug!
rug(mtcars$mpg)

Task 3
hist(log(mtcars$mpg))

1.4 Summary

The aim of this session has been to familiarise you with the R environment if you have not
used R before. If you have but not for a while, then hopefully this has acted as a refresher.
Some key things to take away are:

R is a learning curve, and like driving the more your practice the better you become.
Your job is to try to understand what the code is doing and not to remember the code.

To help with this, you should add your own comments to the script to help you under-
stand what is going on when you return to them. Comments are prefaced by a hash (#)
that is ignored by R.

Always set your working directory to the sub-folder containing your R script.

Always run your code from an R script... always!

The reading for this week is Harris (2016) Chapter 12 up to page 282. You do not have to
install any packages (Section 12.2), packages will be introduced in Week 20, but you should
try some of the code. Go through the illustrations in Section 12.3 (The Basics of R, starting
p253), entering commands with your comments in the script (prep.R) that you created
above

43

https://bookdown.org/lexcomber/GEOG1400/#ref-harris2016quantitative

Optionally you could also briefly read or skim Section 12.3 - the sections are mis-numbered
(A Geographical Introduction to R, starting p261), as we will cover these in more detail in
subsequent weeks and modules. Go through the Section 12.3 (A Little More about the Workings
of R, starting on p268), again entering commands in the script that you created above. Don’t
worry about regression (top of p273) we will cover this later, but pay attention to Data Frames
(p274), Referencing rows and columns (p275) and Subsetting (p279). Stop at Reading Data
(p282).

Other good on-line get started in R guides include:

o The Owen guide (only up to page 28) : https://cran.r-project.org/doc/contrib/Owen-
TheRGuide.pdf

o An Introduction to R - https://cran.r-project.org/doc/contrib/Lam-IntroductionToR,__
LHL.pdf

o R for beginners https://cran.r-project.org/doc/contrib/Paradis-rdebuts__en.pdf

1.4.1 Formative Tasks

Recall that a data.frame is a rectangular array of columns of data. Here you will create a
data frame of two columns containing numeric values. The following data gives the distance
that an elastic band moves when released for each amount it is stretched over the end of a
ruler:

elasticband <- data.frame(stretch=c(46,54,48,50,44,42,52),
distance=c(148,182,173,166,109,141,166))

have a look

elasticband

stretch distance

1 46 148
2 54 182
3 48 173
4 50 166
5 44 109
6 42 141
7 52 166

The function data.frame () can be used to input these (or other) data directly into data.frame
objects.

Task 1 Plot distance against stretch from the elasticband data frame.

44

https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
https://cran.r-project.org/doc/contrib/Lam-IntroductionToR_LHL.pdf
https://cran.r-project.org/doc/contrib/Lam-IntroductionToR_LHL.pdf
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

Task 2 Use the hist() command to plot a histogram of the mpg values in the mtcars data
frame. Hints: a) think about how the Hello World plot was parameterised and the fact that
histograms are constructed from a single variable, and b) examine the help for hist by entering
7hist at the console.

Task 3 Repeat 2 after taking logarithms of disp cover using the log() function - i.e. do a
histogram of ‘log(mtcars$mpg)

1.4.2 References
Brunsdon, Chris, and Lex Comber. 2018. An Introduction to r for Spatial Analysis and
Mapping (2e¢). Sage.

Comber, Lex, and Chris Brunsdon. 2021. Geographical Data Science and Spatial Data Anal-
ysis: An Introduction in r. Sage.

Harris, Richard. 2016. Quantitative Geography: The Basics. Sage.

45

	Welcome
	Contact

	Overview
	Aim and Learning Objectives
	Module Structure
	Software and Data

	Assessment
	Lab: Getting Started in RStudio
	Overview
	Getting set up with RStudio
	Install R and RStudio (if necessary)
	File management
	Open RStudio
	Ways of working
	Your first R code

	Knowing Merseyside
	Merseyside districts
	Merseyside neighbourhoods

	Summary
	Formative Tasks
	References

